
Building applications for interactive data exploration in systems

biology

Bjørn Fjukstad1, Vanessa Dumeaux2, Karina Standahl Olsen3, Michael Hallet2,
Eiliv Lund3, and Lars Ailo Bongo1

1Department of Computer Science, UiT The Arctic University of Norway
2Department of Biology, Concordia University

3Department of Community Medicine, UiT The Arctic University of Norway

Abstract

As the systems biology community generates and col-
lects data at an unprecedented rate, there is a grow-
ing need for interactive data exploration tools to ex-
plore the datasets. These tools need to combine ad-
vanced statistical analyses, relevant knowledge from
biological databases, and interactive visualizations in
an application with clear user interfaces. To answer
specific research questions tools must provide special-
ized user interfaces and visualizations. While these
are application-specific, the underlying components
of a data analysis tool can be shared and reused later.
Application developers can therefore compose appli-
cations of reusable services rather than implementing
a single monolithic application from the ground up
for each project.

Our approach for developing data exploration ap-
plications in systems biology builds on the microser-
vice architecture. Microservice architectures sepa-
rates an application into smaller components that
communicate using language-agnostic protocols. We
show that this design is suitable in bioinformatics ap-
plications where applications often use different tools,
written in different languages, by different research
groups. Packaging each service in a software con-
tainer enables re-use and sharing of key components
between applications, reducing development, deploy-
ment, and maintenance time.

We demonstrate the viability of our approach

through a web application, MIxT blood-tumor, for
exploring and comparing transcriptional profiles from
blood and tumor samples in breast cancer pa-
tients. The application integrates advanced statis-
tical software, up-to-date information from biological
databases, and modern data visualization libraries.

The web application for exploring transcriptional
profiles, MIxT, is online at mixt-blood-tumor.

bci.mcgill.ca and open-sourced at github.com/

fjukstad/mixt. Packages to build the supporting
microservices are open-sourced as a part of Kvik at
github.com/fjukstad/kvik.

Introduction

In recent years the biological community has gener-
ated an unprecedented ammount of data. While the
cost of data collection has drastically decreased, data
analysis continue to be a larger fraction of the total
experiment cost.[1] An important part of data anal-
ysis includes the time spent by human experts inter-
preting the results. This calls for novel methods for
building data analysis tools for data exploration and
interpretation.

In the field of systems biology, data exploration ap-
plications need to link results to relevant prior knowl-
edge. In the later years there has been a tremendous
effort to curate databases with relevant information
on genes and processes. Databases such as the Molec-
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ular Signatures Database (MSigDB)1 and the Kyoto
Encyclopedia of Genes and Genomes (KEGG)2 both
provide interfaces to retrieve data that can be used
to better the understanding of data analysis results.

Several tools for biological data analysis are now
available in various programming languages. These
include a wide variety of bioinformatics methodolo-
gies and graphical analysis tools. In the R statisti-
cal programming language developers share software
through repositories such as CRAN3 or Bioconduc-
tor4. In other languages, libraries for biological bom-
putation are often availalbe like BioPython[2] and
biogo[3] for Python or Go, respectively. Projects
such as Galaxy5 and Common Workflow Language
(CWL)6 enable resarchers to build and run biological
data analysis pipelines consisting of a wide range of
tools. Although these framework are tremendously
helpful, we need novel approaches to build applica-
tions that integrate high-performance bioinformatics
tools with specialized user-interfaces and interactive
visualizations.

Different programming languages solve different
tasks. For example, new biological data analysis tech-
niques are quickly realeased in R and its package
repositories; high-performance computer vision tasks
are performed in C++ and OpenCV; and portable
user interfaces more easily built in HTML, CSS and
JavaScript. Therefore applications that integrate
novel statistical analysis tools, interactive visualiza-
tions, and biological databases likely need to include
several components written in different languages.

A microservice architecture structures an applica-
tion into small reusable, loosely coupled parts. These
communicate via lightweight programming language-
agnostic protocols such as HTTP, making it possi-
ble to write single applications in multiple program-
ming languages. This way the most suitable pro-
gramming language is used for each specific part. To
build a microservice application, developers bundle
each service in a container. Containers are built from

1software.broadinstitute.org/gsea/msigdb
2kegg.jp
3cran.r-project.org
4bioconductor.org
5galaxyproject.org
6commonwl.org

configuration files which describe the operating sys-
tem, software packages and versions of these. This
makes reproducing the analyses, database lookups,
library versions in an application a trivial task. The
most popular implementation of a software container
is Docker7, but others such as Rkt8 exist. Initia-
tives such as BioContainers9 now provide contain-
ers pre-installed with different bioinformatics tools.
While the enabling technology is available, the mi-
croservices approach is not yet widely adopted in
bioinformatics.[4]

From our experience we have identified a set of
components and features we needed to build data ex-
ploration applications.

1. A low-latency language-independent approach
for integrating, or embedding, statistical soft-
ware, such as R, directly in a data exploration
application.

2. Low latency language-independent interface to
online reference databases in biology that users
can query to better understand resulst from sta-
tistical analyses.

3. A simple method for deploying and sharing the
components of an application between projects.

In this paper, we describe a novel approach for
building data exploration applications in systems bi-
ology. We show that by building applications as a
set of services we can reuse and share its compo-
nents between applications. The key services of a
biological data exploration application are i) a com-
pute service for executing statistical analyses in lan-
guages such as R, ii) a database query service for
retrieving information from biological databases, and
iii) the user-facing visualizations and user-interfaces.
In addition, by packaging the services using container
technology they are easy to deploy, simple to repro-
duce, and easy to share between projects. We have
used our approach to build a number of applications,
both command-line and web-based. In this paper we
describe how we used our approach to develop MIxT,

7docker.com
8coreos.com/rkt
9biocontainers.pro
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a web application for exploring and comparing tran-
scriptional profiles from blood and tumor samples.

Methods

In this section we first motivate our microservice ap-
proach based on our experiences developing the MIxT
web application. We describe the process from initial
data analysis to the final application, highlighting the
importance of language-agnostic services to facilitate
the use of different tools in different parts of the ap-
plication. We show that these services are easy to
deploy and provide performance to use them to build
data exploration applications. We then generalize the
ideas to a set of principles and services that can be
reused and shared between applications, and show
their design and implementation.

Motivating Example

The aim of the Matched Interactions Across Tissues
(MIxT) study was to identify genes and pathways
in the primary breast tumor that are tightly linked
to genes and pathways in the patient blood cells.[5]
We generated and analyzed expression profiles from
blood and matched tumor cells in 173 breast cancer
patients included in the Norwegian Women and Can-
cer (NOWAC) study. The MIxT analysis starts by
identifying sets of genes tightly co-expressed across
all patients in each tissue. Each group of genes or
modules were annotated based on known a priori bi-
ological knowledge about gene functionality. Focus
was placed on the relationships between tissues by
asking if specific biologies in one tissue are linked
with (possibly distinct) biologies in the second tis-
sue, and this within different subgroup of patients
(i.e. subtypes of breast cancer).

We built an R package10 with the statistical meth-
ods and static visualizations for identifying associ-
ations between modules across tissues. The explo-
ration of the results encompass the examination of
∼ 20 modules and their functional enrichments. That
is ∼ 23× 19 = 437 associations computed for each of
the 22 patient subgroups.

10github.com/vdumeaux/mixtR

To explore this large amount of data and results
we needed an interactive point-and-click application
that could interface with the statistical methods and
link the results to online databases. This would make
it possible for users to explore the results without any
coding background. We needed an application that
could interface with MSigDB to fetch gene set meta-
data and the Entrez Programming Utilities (E-utils)
to retrieve gene meta-data. To make the interfaces
to the statistical analyses and databases re-usable by
other applications that we aim to implement later it
was necessary for these to communicate using open
protocols.

In addition, we required that the application was
containerized. This allows us to deploy the appli-
cation on a wide range of hardware, from local in-
stallations to deployments to cloud providers such as
Amazon Web Services (AWS)11.

Design

Our experience can be generalized into the following
design principles for building applications in bioinfor-
matics:

Principle 1: Build applications as collections of
language-agnostic microservices. This enables re-use
of components and does not enforce any specific pro-
gramming language on the user-facing logic or the
underlying components of the application. Within
bioinformatics, researchers and application develop-
ers use a wide range of programming languages to
build tools. By composing an application of services
communicating over standard protocols it is possible
to re-use existing tools in new applications.

Principle 2: Use software containers to package
each service. This has a number of benefits; it sim-
plifies deployment, ensures that dependencies and li-
braries are installed, and it simplifies sharing of ser-
vices between developers.

Using these design principles we built the MIxT
web application using the microservices in Kvik
to interface with statistical analyses and biological
databases. Kvik provides a compute service for exe-
cuting statistical analyses and a database service for

11aws.amazon.com
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retrieving relevant information on genes and biolog-
ical processes. Using these it is possible to develop
specialized data exploration application in any mod-
ern programming language. In the rest of the section
we discuss the design choices we made to build the
microservices that power the MIxT web application.

Compute Service

The main cornerstone of every data exploration ap-
plication in systems biology is a dataset. Datasets go
through a series of transformations before they can be
interpreted by experts. Because of the complexity of
these datasets, package repositories such as BioCon-
ductor provide software for reading and analyzing the
data. Because of the complex datasets, there are a
number of requirements for systems that can explore
them i) datasets require specialized software to be
read, ii) datasets can be too big to fit on a desktop
computer, iii) statistical methods for analyzing the
datasets are too computationally intensive to run on
a desktop computer, iv) users may want to modify
statistical analyses directly from an application, and
v) users need to know exactly what transformations
has been done to a dataset to reproduce the analyses.

From these requirements we have designed the
compute service in Kvik. The compute service in-
terfaces directly with the R programming language,
making it possible to call functions from any R pack-
age. Application developers can use the compute ser-
vice to execute analyses and return results. By inter-
facing directly with R developers can leverage this to
produce dynamic applications. For example, if an ap-
plication uses a clustering method to color nodes in a
graph, end-users can tweak parameters that interac-
tively within the application that changes the node
coloring in graph visualization. Also, by interfacing
with R directly from an application, the application
can store provenance data on the statistical methods
and input parameters being used. By placing data
storage and analysis into a service, application devel-
opers can deploy it on a powerful server while keep-
ing the user-facing application logic on the desktop.
Packaging the service into a software container also
provides the necessary functionality to ensure that
the statistical analyses can be reproduced later.

The compute service offers three main operations
to interface with R. i) to call a function from an R
package, ii) to get the results from a previous func-
tion call, and iii) a catch-all term that both calls a
function and returns the results. We use the same ter-
minology as OpenCPU[6] and have named the three
operations Call, Get, and RPC respectively. These
three operations provide the necessary interface for
applications to include data in the applications.

Database Service

To understand analysis results experts query
databases and scientific literature. There are a wealth
of online databases, some of which provide open APIs
in addition to web user interfaces that application
developers can make use of. While the databases
can provide helpful information, there are some chal-
lenges including them in interactive data exploration
applications:

i) the APIs aren’t fast enough to use in interac-
tive applications where the application has to per-
form multiple database calls, ii) some databases put
restrictions on the number of database calls, and iii)
there is no uniform way for storing database lookup
provenance to reproduce the database lookups.

To solve these problems we built a database ser-
vice for application developers to include. The ser-
vice includes a simple caching mechanism that solves
the two challenges. If we cache queries to the
database we can speed up subsequent calls and re-
duce the load on the respective databases. Both the
query from the application and the response from the
databases are stored for later use. The database ser-
vice provides an open HTTP interface to biological
databases for retrieving meta-data on genes and pro-
cesses. We have currently packages for interfacing
with E-utilities12, MSigDB13, Hugo Gene Nomencla-
ture Committe (HGNC)14, and Kyoto Encyclopedia
of Genes and Genomes (KEGG)15.

12eutils.ncbi.nlm.nih.gov
13software.broadinstitute.org/gsea/msigdb
14genenames.org
15kegg.jp
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Applications

Kvik provides services to perform database lookup
and execute statistical analyses. Since we provide
both services as software containers, application de-
velopers simply run these and write applications that
interface with them. Using our services application
developers have a platform for running statistical
analyses, and a fast clean interface to get metadata
about genes and processes.

Figure 1 shows how the the MIxT application is
built using Kvik microservices. In MIxT we built a
specialized web application that interfaces with Kvik
to get data from biological databases and to run sta-
tistical analyses from the mixt R package16.

Figure 1: An overview of the relationship between
the MIxT application and Kvik. MIxT contains a
web application (online at mixt-blood-tumor.bci.

mcgill.ca) and the R Package that provides analyses
and data to the web application. Kvik provides the
services for running the statistical analyses from the
R package, and the database lookups found in the
web application.

16github.com/vdumeaux/mixtR

Implementation

In ths section we describe the implementation details
of the microservices we provide in Kvik.

Kvik is implemented as a collection of Go packages
required to build services that can integrate statisti-
cal software in a data exploration and provide an in-
terface to up-to-date biological databases. We chose
the Go programming language because of its perfor-
mance, ease of development, and simple deployment.
To integrate R we provide two packages gopencpu and
r, that interface with OpenCPU and Kvik R servers
respectively. To interface with biological databases
we provide the packages eutils, gsea, genenames, and
kegg that interface with E-utils, MsigDB, HGNC and
KEGG respectively. In addition to these packages
we provide Docker images that implement the two
required microservices.

Both the compute and the databases service in
Kvik builds on the standard http package in Go. The
database service use the gocache17 package to cache
any query to an online database. In addition we de-
ploy each service as Docker containers.18

Compute Service

The compute service is an HTTP server that com-
municates with a pre-set number of R processes to
execute statistical analyses. On start of the compute
service launches a user-defined number of R worker
sessions for executing analyses, default is 5. The com-
pute service uses a round-robin scheduling scheme to
distribute incoming requests to the workers. We pro-
vide a simple FIFO queue for queuing of requests.
The compute service also provides the opportunity
for users to cache analysis results to speed up subse-
quent calls.

The compute service in Kvik is built using a hy-
brid state pattern. A hybrid state pattern origins
from functional programming, where output from a
method only depends on its inputs and not the pro-
gram state.[6]. In practice this means that the com-
pute services stores the output results from function

17github.com/fjukstad/gocache
18Available at hub.docker.com/r/fjukstad/kvik-r and

hub.docker.com/r/fjukstad/db

5

.CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/141630doi: bioRxiv preprint first posted online May. 24, 2017; 

mixt-blood-tumor.bci.mcgill.ca
mixt-blood-tumor.bci.mcgill.ca
github.com/vdumeaux/mixtR
github.com/fjukstad/gocache
hub.docker.com/r/fjukstad/kvik-r
hub.docker.com/r/fjukstad/db
http://dx.doi.org/10.1101/141630
http://creativecommons.org/licenses/by-nc-nd/4.0/


calls, but can compute them if the service has to
restart. This makes it possible for us to scale the com-
pute service horizontally to handle more requests. If
an R worker session for some reason crashes the com-
pute service simply starts up a replacement.

Matched interactions across tis-
sues

We show the viability of the microservices approach
in Kvik by describing the MIxT web application for
exploring and comparing transcriptional profiles from
blood and tumor samples. We also evaluate the per-
formance of the microservices in Kvik to show its
usefulness in building MIxT.

Analysis Tasks

The web application provides functionality to per-
form six data analysis tasks (A1-A6):
A1: Explore co-expression gene sets in tumor and

blood tissue. We simplify the process of exploring
the computed co-expression gene sets, or modules,
through the web-application. The application visu-
alize gene expression patterns together with clinico-
pathological variables for each module. In addition
we enable users to study the underlying biological
functions of each module by including gene set anal-
yses between the module genes and known gene sets.
A2: Explore co-expression relationships between

genes. Users can explore the co-expression relation-
ship as a graph visualization. The network visualizes
each gene as a node and a significant co-expression
relationship as an edge.
A3: Explore relationships between modules from

each tissue. Users can explore the relationship be-
tween modules from different tissues. We provide
two different metrics to compare modules, and the
web application enables users to interactively browse
these relationships. In addition to providing visual-
izations the compare modules from each tissue, users
can explore the relationships, but for different breast
cancer patient groups.
A4: Explore relationships between clinical vari-

ables and modules. In addition to comparing the

association between modules from both tissues, users
also have the possibility to explore the association
with a module and a specific clinical variable. It is
also possible to explore the associations stratifying
on breast cancer patient group.

A5: Explore association between user-submitted
gene lists and computed modules. We want to enable
users to explore their own gene lists to explore them
in context of the co-expression gene sets. The web ap-
plication must handle uploads of gene lists and com-
pute association between the genelist and the MIxT
modules on demand.

A6: Search for genes or gene lists of interest. To
facilitate faster lookup of genes and biological pro-
cesses, the web application provides a search func-
tionality that lets users locate genes or gene lists and
show association to the co-expression gene sets.

Design and Implementation

From these six analysis tasks we designed and im-
plemented MIxT as a web application that inte-
grates statistical analyses and information from bi-
ological databases together with interactive visual-
izations. The MIxT web application consists of three
services: i) the web application itself containing the
user-interface and visualizations; ii) the compute ser-
vice performing the MIxT analyses delivering data
to the web application; and iii) the database ser-
vice providing up-to-date information from biological
databases. Each of these services run within Docker
containers making the process of deploying the appli-
cation simple.

We structured the MIxT application with a sepa-
rate view for each analysis task. To explore the co-
expression gene sets (A1) we built a view that com-
bines both static visualizations from R together with
interactive tables with gene overlap analyses. Figure
3 shows the web page presented to users when they
access the co-expression gene set ’darkturquoise’ from
blood. Using the Kvik compute service we can gen-
erate plots on demand and provide users with high-
resolution PDFs or PNG files. To explore the co-
expression relationship between genes (A2) we use an
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interactive graph visualization build with Sigmajs19.
We have built visualization for both tissues, with
graph sizes of 2705 nodes and 90 348 edges for the
blood network, and 2066 nodes and 50 563 edges
for the biopsy network. The sigmajs visualization
library has functionality for generating a layout for
large networks, but we generate this layout server-
side to reduce the computational load on the client.
To generate this layout we use the GGally package20.
By generating the network layout using the compute
service we relieve the clients.

To visualize relationships between modules from
different tissues (A3), or their relationship to clini-
cal variables (A4) we built a heatmap visualization
using the d321 library. Figure 2 shows an example of
this heatmap visualization, showing the association
between the clinical variables and the modules from
biopsy for all samples.

Figure 2: Heatmap visualization of the associa-
tion between clinical variables and the modules
in biosy. The visualization is built using the
d3 JavaScript library. The visualization can be
viewed online at mixt-blood-tumor.bci.mcgill.

ca/clinical-comparison

Since we interface directly with R we can run anal-
yses on demand. We built a simple upload page
where users can upload their gene sets or type them
in manually (A5). The file is uploaded to the web

19sigmajs.org
20cran.r-project.org/web/packages/GGally
21d3js.org

application which redirects it to the compute service
that runs the analyses. Similarly we can take user
input to search for genes and processes (A5).

Evaluation

To investigate if it is feasible to implement parts of
an application as separate services, we evaluate the
response times for a set of queries. We have also
investigated the time the MIxT web application use
to produce the visualizations for the analysis tasks.

To evaluate the database service we measure the
query time for retrieving information about a spe-
cific gene with and without caching. This illustrates
how we can improve performance in an application
by using a database service rather than accessing the
database directly. We evaluate the query time for
1, 2, 5, 10, and 15 concurrent requests. Since the
database service is just a lightweight HTTP server
we use a AWS EC2 t2.micro22 instance to host it.

From the results in Table 1 we see a significant im-
provement in response time when the database ser-
vice caches the results from the database lookups. In
addition by serving the results out of cache we reduce
the number of queries to the online database down to
one.

1 2 5 10 15
No cache 956ms 1123ms 1499ms 2147ms 2958ms
Cache 64ms 64ms 130ms 137ms 154ms

Table 1: Time to retrieve a gene summary for a sin-
gle gene, comparing different number of concurrent
requests.

We evaluate the compute service by running a
small microbenchmark. The benchmark consists of
two operations: first generate a set of numbers, then
plot them and return the resulting visualization. We
show that the latency is low enough to use it in an
interactive application, and compare our solution to
the OpenCPU system. To show that it performs well
under heavy load we perform the same operations us-
ing 1, 2, 5, 10, and 15 concurrent requests. We use

22See aws.amazon.com/ec2/instance-types for more infor-
mation about AWS EC2 instance types.
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Figure 3: MIxT module overview page. The screenshot show the user interface for exploring a single
module. It consists of three panels. The top left panel contains the gene expression heatmap. The top right
panel contains a table of the genes found in the module. The bottom panel contains the results of gene
overlap analyses from the module genes and known gene sets from MSigDB. The visualization is online at
mixt-blood-tumor.bci.mcgill.ca/modules/blood/darkturquoise/cohort/all

two c4.large instances on AWS EC2 running the Kvik
compute service and OpenCPU base docker contain-
ers. The servers have caching disabled.

With single requests the the mean execution time
in Kvik is 274ms while OpenCPU uses 500ms. We
then investigate how each service handles concurrent
requests. Table 2 shows the time to complete the
benchmark for different number of concurrent con-
nections. We see that the compute service in Kvik
performs better than the OpenCPU alternative.

We also investigate the performance of the MIxT
web application to discover potential areas of im-
provement. We measured the time from an user clicks
on a link to open a specific view, until the user can
interact with the results. Table 3 show the results

1 2 5 10 15
Kvik 274ms 278ms 352ms 374ms 390ms
OpenCPU 500ms 635ms 984ms 1876ms 2700ms

Table 2: Time to complete the R microbenchmark
with different number of concurrent connections.

from our evaluation, with anlysis tasks A1 and A2
being the most time consuming. A1 generates the
view in Figure 3 which contains large HTML tables
with results from the gene set tests that take the ma-
jor fraction of the time to completion. The time to
completion in analysis task A2 comes from retrieving
and rendering the two large graphs.
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Analysis task Number of calls Time to completion
A1 10 10 seconds
A2 5 30 seconds
A3 1 2 seconds
A4 1 2 seconds
A5 2 3 seconds
A6 NA NA

Table 3: An overview of the number of calls to the
compute service and completion time before the re-
sults for the different analysis tasks are ready to be
explored. The number of calls and completion time
for analysis task 6 depends on the search query.

Related Work

In this section we discuss methods for integrating sta-
tistical analyses in data exploration applications, dif-
ferent visualization frameworks, interfaces to biolog-
ical reference databases, and methods for container-
izing applications.

Integrate Statistical Analyses

Shiny is a web application framework for R23 It al-
lows developers to build web applications in R with-
out having to have any knowledge about HTML, CSS
or Javascript. Its widget library to provides more ad-
vanced Javascript visualizations such as Leaflet24 for
maps or three.js25 for WebGL-accellerated graphics.
Developers can choose to host their own web server
with the user-built Shiny Apps, or host them on pub-
lic servers. Shiny forces users to implement data ex-
ploration applications in R, limiting the functionality
to the widgets and libraries in Shiny.

OpenCPU is a system for embedded scientific com-
puting and reproducible research.[6] Similar to the
compute service in Kvik, it offers an HTTP API to
the R programming language to provide an interface
with statistical methods. It allows users to make
function calls to any R package and retrieve the re-
sults in a wide variety of formats such as JSON or
PDF. Users can chose to host their own R server or

23shiny.rstudio.com
24leafletjs.com
25threejs.org

use public servers, and OpenCPU works in a single-
user setting within an R session, or a multi-user
setting facilitating multiple parallel requests. This
makes OpenCPU suitable for building a service that
can run statistical analyses. OpenCPU provides a
Javascript library for interfacing with R, as well as
Docker containers for easy installation. OpenCPU
has been used to build multiple applications.26. The
compute service in Kvik follows many of the design
patterns in OpenCPU. Both systems interface with
R packages using a hybrid state pattern over HTTP.
Both systems provide the same interface to execute
analyses and retrieve results. While OpenCPU is
implemented on top of R and Apache, Kvik is im-
plemented from the ground up in Go. Because of
the similarities in the interface to R in Kvik we pro-
vide packages for interfacing with our own R server
or OpenCPU R servers

Renjin is a JVM-based interpreter for the R pro-
gramming language.[7] It enables integrating the R
interpreter in web applications. Since it is built on
top of the JVM it allows developers to write data ex-
ploration applications in Java that interact directly
with R code, both running on top of the JVM. Al-
though Renjin provides as a service pre-built versions
of packages from CRAN and BioConductor, not all
packages can be built for use in Renjin. This makes it
necessary to re-implement the packages that cannot
be built for use in Renjin.

Parallel and Distributed Execution

Biogo is a bioinformatics library written in Go.
It provides functionality to analyze genomic and
metagenomic datasets in the Go programming
language.[3] Using the Go programming language the
developers are able to provide high-performance par-
allel processing in a clean and simple programming
language. Go provides the ease of programming as
popular scripting languages such as R, but the per-
formance of low-level langauges such as C++.

MapReduce is a popular framework and program-
ming model to analyze large-scale datasets using dis-
tributed and parallel computing.[8] While MapRe-

26opencpu.org/apps.html
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duce has shown its usefulness in certain applica-
tions, it does not fit the different statistical meth-
ods in bioinformatics. An alternative to MapReduce
is Spark, which supports high-performance parallel
execution of iterative machine learning methods by
partitioning data across a set of machines and opti-
mizing the data access.[9] Spark is growing in pop-
ularity, especially with the Spakrlyr27 and SparkR28

R packages that allow R users to run analyses on top
of Spark without having to port the analysis code to
another language.

ADAM and VariantSpark are systems that are
implemented on top of Spark to analyse genomic
data. ADAM provides a set of formats, APIs and
processing stage implementations [10] while Vari-
antSpark provides an method for clustering genomic
variants[11].

Pachyderm29 is a system for running containerized
data analysis pipelines. Each step in an analysis
pipeline is run within a software container and the
output data is version controlled. Pachyderm auto-
matically partitions and distributes the input data to
enable parallel processing. Pachyderm runs on top of
Kubernetes30, a system for managing and deploying
containerized applications.

Visualization tools

Cytoscape is an open source software platform for
visualizing complex networks and integrating these
with any type of attribute data[12]. It allows for anal-
ysis and visualization in the same platform. Users
can add additional features, such as databases con-
nections or new layouts, through Apps. One such app
is cyREST which allows external network creation
and analysis through a REST API[13]. To bring the
visualization and analysis capabilities to the web the
creators of Cytoscape have developed Cytoscape.js31,
a Javascript library to create interactive graph visu-
alizations.

Caleydo is a framework for building applications

27spark.rstudio.com
28spark.apache.org/docs/latest/sparkr.html
29pachyderm.io
30kubernetes.io
31js.cytoscapejs.org

for visualizing and exploring biomolecular data[?].
Until 2014 it was a standalone tool that needed to be
downloaded, but the Caleydo team are now making
the tools web-based. There have been several appli-
cations built using Caleydo: StratomeX for explor-
ing stratified heterogeneous datasets for disease sub-
type analysis[14]; Pathfinder for exploring paths in
large multivariate graphs[15]; UpSet to visualize and
analyse sets, their intersections and aggregates[16];
Entourage and enRoute to explore and visualize bi-
ological pathways [17][18]; LineUp to explore rank-
ings of items based on a set of attributes[19]; and
Domino for exploring subsets across multiple tabular
datasets[20].

BioJS is an open-source JavaScript framework
for biological data visualization.[21] It provides a
community-driven online repository with a wide
range components for visualizing biological data con-
tributed by the bioinformatics community. BioJS
builds on node.js32 providing both server-side and
client-side libraries.

Containerized analysis

In the later years software containers have been
widely adopted by both the software industry as
well as research communities. Containers provide an
isolated execution environment that can be used to
package and run an application with all its depen-
dencies, library versions and configuration files. In
researchers containers have become popular because
they provides a reproducible environment that can
be shared between research projects.

In bioinformatics researchers are starting to
bundle their software using software containers,
such as Docker. There are repositories such as
BioContainers[22] and BioBoxes[23] that provide con-
tainers preinstalled with software for doing analy-
ses and running different applications. Systems such
as Galaxy now allow researchers to build analysis
pipelines where each step is executed within a soft-
ware container.

32nodejs.org
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Kvik and Kvik Pathwys

We have previously built a system for interactively
exploring gene expression data in context of biologi-
cal pathways.[24] Kvik Pathways is a web application
that integrates gene expression data from the Norwe-
gian Women and Cancer (NOWAC) cohort together
with pathway images from the Kyoto Encyclopedia
of Genes and Genomes (KEGG). We used the experi-
ence building Kvik Pathways to completely re-design
and re-implement the R interface in Kvik. From hav-
ing an R server that can run a set of functions from an
R script, it now has a clean interface to call any func-
tion from any R package, not just retrieving data as a
text string but in a wide range of formats. We also re-
built the database interface, which is now a seperate
service. This makes it possible to leverage its caching
capabilities to improve latency. This transformed the
application from being a single monolithic applica-
tion into a system that consists of a web application
for visualizing biological pathways, a database service
to retrieve pathway images and other metadata, and
a compute service for interfacing with the gene ex-
pression data in the NOWAC cohort. We could then
re-use the database and the compute service in the
MIxT application.

Discussion

We argue that developing data exploration applica-
tions using a microservice architecture is a viable al-
ternative to the traditional monolithic approach. By
packaging each component of an application in a soft-
ware container application developers can reuse and
share parts of an application across research teams
and projects.

Although the partition of components can help
break up an application into manageable parts, there
is more overhead with deploying and monitoring
these than a single application. Leslie Lamport’s fa-
mous quote You know you have a distributed system
when the crash of a computer you’ve never heard of
stops you from getting any work done. perfectly de-
scribes the possible challenges application develop-
ers face when moving into a microservice architec-

ture. Monitoring the health of the different services
and keeping the services running is a challenge, but
systems such as Kubernetes33 provide the necessary
functionality to manage containerized applications.

Future work

Although we have a first working prototype of the
microservices and the MIxT web application, there
are a few points we aim to address in future work.

The first issue is to improve the user experience
in the MIxT web application. Since it is performing
many of the analyses on demand, the user interface
may seem unresponsive. We are working on mecha-
nisms that gives the user feedback when the compu-
tations are taking a long time.

The database service provides a sufficient inter-
face for the MIxT web application. While we have
developed the software packages for interfacing with
more databases, these haven’t been included in the
database service yet. In future versions we aim to
make the database service be a interface for all our
applications. We also aim to improve how we cap-
ture data provenance. We aim to provide database
versions and meta-data about when a specific item
was retrieved from the database.

One large concern that we haven’t addressed in this
paper is security. In particular one security concern
that we plan to address in Kvik is the restrictions on
the execution of code in the compute service. We plan
to address this in the next version of the compute
service, using methods such as AppArmor34 that can
restrict a program’s resource access.

We also aim to explore different avenues for scaling
up the compute service. Since we already interface
with R we can use the Sparklyr or SparkR packages
to run analyses on top of Spark. Using Spark as an
execution engine for data anlyses will enable applica-
tions to explore even larger datasets.

33kubernetes.io
34wiki.ubuntu.com/AppArmor
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Conclusions

We have designed an approach for building data ex-
ploration applications in systems biology that builds
on a microservice architecture. Using this approach
we have built a web application that leverages this ar-
chitecture to integrate statistical analyses, interactive
visualizations, and data from biological databases.
While we have used our approach to build an ap-
plication in systems biology, we believe that the mi-
croservice architecture can be used to build data ex-
ploration systems in other disciplines as well.
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